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Abstract

Motivation: Advances in single-cell measurement techniques
provide rich multimodal data, which helps us to explore the
life state of cells more deeply. However, multimodal inte-
gration, or, learning joint embeddings from multimodal data
remains a current challenge. The difficulty in integrating un-
paired single-cell multimodal data is that different modalities
have different feature spaces, which easily leads to informa-
tion loss in joint embedding. And few existing methods have
fully exploited and fused the information in single-cell multi-
modal data. Result: In this study, we propose CoVEL, a deep
learning method for unsupervised integration of single-cell
multimodal data. CoVEL learns single-cell representations
from a comprehensive view, including regulatory relationships
between modalities, fine-grained representations of cells, and
relationships between different cells. The comprehensive view
embedding enables CoVEL to remove the gap between modal-
ities while protecting biological heterogeneity. Experimental
results on multiple public datasets show that CoVEL is ac-
curate and robust to single-cell multimodal integration. Data
availability: https://github.com/shapsider/scintegration.

Introduction
Single-cell measurement technology can measure the abun-
dance of molecules at the cellular level, which allows us to
understand the life state of organisms more clearly and screen
drugs to target diseases (Lartigue et al. 2007; Lv et al. 2023;
Tang et al. 2023). Single-cell measurement technology has
developed rapidly in the past 10 years. For example, Eber-
wine et al. measured RNA content at the single-cell level for
the first time (Eberwine et al. 1992). Tang et al. further intro-
duced single-cell transcriptome sequencing (Tang et al. 2009).
Klein et al. and Macosko et al. used droplet technology to ex-
pand the measurement scale (Klein et al. 2015; Macosko et al.
2015), CITE-seq simultaneously measures RNA expression
and cell surface protein abundance (Stoeckius et al. 2017),
sci-CAR and SNARE-seq can jointly measure RNA expres-
sion and chromatin accessibility (Cao et al. 2018; Chen, Lake,
and Zhang 2019). Joint measurement methods can provide
single-cell multimodal data and bring valuable insights into
the overall understanding of biological systems. However,
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single-cell multimodal (multi-omics) data often consists of
unpaired cells with mismatched features across modalities
(see Figure 1), making single-cell multimodal data analysis a
huge challenge.

Figure 1: The goal of multimodal integration is to eliminate
gaps (enhance batch remove metric) and preserve biological
heterogeneity (cluster cells of the same type together, enhance
biology conservation metric).

In Figure 1, the problem description of single-cell multi-
modal integration is: single-cell data is stored in a matrix,
rows represent cells (i.e. samples), columns represent fea-
tures. Different modalities correspond to different feature
spaces, and there is no one-to-one correspondence between
samples in different modalities (the same cell does not exist
in modal 1 and modal 2, but cells of the same type may exist
in modal 1 and modal 2). For the same type of cells with
different modalities, since the feature spaces of two modali-
ties are completely different, there is a significant gap in the
embeddings after direct dimensionality reduction. The goal
of multimodal integration is to eliminate gaps (enhance batch
remove metric) and preserve biological heterogeneity (cluster
cells of the same type together, enhance biology conservation
metric).

A major obstacle faced when integrating unpaired single-
cell multimodal data is that different modalities have different
feature spaces, such as accessible chromatin regions in the
ATAC modality and genes in the RNA modality. A common



approach is to project multimodal data into a common feature
space and then correct for differences between modalities,
but early projection operations can lead to information loss
(Stuart et al. 2019; Welch et al. 2019; Korsunsky et al. 2019).
Algorithms based on matrix factorization can avoid projec-
tion operations, but cannot handle more than two omics data
(Gao et al. 2021). There are also methods to match data
from different modalities via nonlinear manifold alignment,
which can reduce information loss between modalities, how-
ever, they cannot align uniformly distributed data (Cao et al.
2020; Cao, Hong, and Wan 2022). Recently, multimodal
deep learning methods have been applied to bioinformatics
field (Baltrušaitis, Ahuja, and Morency 2018; Steyaert et al.
2023). However, few existing methods have fully exploited
and fused the information in single-cell multimodal data.
CLUE designs multiple auxiliary tasks to supervise VAE
to capture the relationship between single-cell multi-omics
data (Tu et al. 2022). GLUE achieves multimodal integra-
tion by building a guidance graph, that is, to obtain joint
embedding (Cao and Gao 2022). The guidance graph can
learn the regulatory relationship between modalities. How-
ever, they lack the exploration of cell representation learning,
because from the field of single cell representation learning,
scBERT uses Transformer to learn cell fine-grained features
(Yang et al. 2022a), and Concerto uses contrastive learning
and builds relationships between cells (Yang et al. 2022b).
Note that some single-cell representation learning methods
target RNA modality, and these methods cannot handle mul-
timodal data. But their ideas are worth considering, such as
fine-grained representation learning and contrastive learning
have achieved excellent performance in RNA modality. From
the embedding point of view, all the above methods learn rep-
resentations of three views respectively: regulatory between
modalities, cell fine-grained representation, and contrastive
learning between cells. However, neither current single-cell
representation learning methods nor single-cell multimodal
integration methods consider fusing these three view repre-
sentations.

In this study, we propose a Comprehensive View
Embedding Learning method CoVEL. CoVEL learns embed-
ding from three views on single-cell multimodal data, such
as: the regulatory relationship between different modalities,
named graph-linked embedding; the relationship between
single-cell fine-grained features in each modality, named
single-cell fine-grained embedding; the representation of a
single cell sample in each modality, named contrastive cell
embedding. By learning graph-linked embedding, CoVEL
can model the regulatory relationship across modalities, and
bridge the gap between feature spaces under different modali-
ties with biological knowledge. CoVEL combines generative
methods and contrastive learning to unsupervisedly learn
single-cell fine-grained embedding and contrastive cell em-
bedding on multimodal data, ensuring that the gap between
modalities is removed and biological heterogeneity is pre-
served. From the perspective of representation learning, con-
trastive learning tries to find information between data, while
generative methods focus on learning information within data
(Liu et al. 2021). Therefore, CoVEL is a comprehensive self-
supervised learning method. Experimental results on public

datasets demonstrate that CoVEL is accurate and robust to
single-cell multimodal integration.

Related work
Single-cell representation learning
Single-cell representation learning can be divided into three
views: regulatory between modalities, cell fine-grained repre-
sentation, and contrastive learning between cells. scGCN and
HGT learn high-order relationships between cells based on
graphs and infer biological networks (Song, Su, and Zhang
2021; Ma et al. 2023). scBERT leverages large-scale language
models to learn fine-grained representations of single-cell
transcriptomes (RNA modality) (Yang et al. 2022a). TOSICA
combines pathway information with Transformer to learn
fine-grained representations and assists in the discovery of
markers (Chen et al. 2023). scMDC optimized VAE with
ZIBN, also obtained good fine-grained cell representations
(Lin et al. 2022). Concerto and scDML utilize contrastive
learning to eliminate batch effects in the single-cell transcrip-
tome (RNA modality) embedding space and avoid the loss
of original rare cell type information (Yang et al. 2022b; Yu
et al. 2023). Some single-cell representation learning meth-
ods target RNA modality, and these methods cannot handle
multimodal data. But their ideas are worth considering, such
as fine-grained representation learning and contrastive learn-
ing have achieved excellent performance in RNA modality.
Therefore, CoVEL combines the three types of representation
learning to integrate multimodal data according to multi-view
context.

Single-cell multimodal integration
Single-cell multimodal integration methods can be classi-
fied into semi-supervised and unsupervised. Semi-supervised
methods utilize paired multimodal observations. Seurat v4
uses paired multimodal observations to interconnect other
single-modal data (Hao et al. 2022). MultiVI uses multiple
VAEs to learn multimodal data and align joint embedding
(Ashuach et al. 2021). CLUE introduces auxiliary tasks to
establish associations in multimodal spaces (Tu et al. 2022).
scMoGNN extracts cell-modal connections with GNNs and
uses known single-modal embedding to learn multimodal
joint embedding (Wen et al. 2022). Unsupervised methods
are used to integrate multimodal measurements without any
paired information. Seurat v3 (Stuart et al. 2019), LIGER
(Welch et al. 2019), and Harmony (Korsunsky et al. 2019)
perform feature transformation first, and then correct the dif-
ferences between modalities in the common space, but feature
transformation will cause significant information loss. The
matrix factorization-based method iNMF (Gao et al. 2021)
can avoid the projection operation, but cannot handle more
than two omics data. bindSC is limited by RNA and ATAC
modalities and lacks scalability (Dou et al. 2022). UnionCom
(Cao et al. 2020) and Pamona (Cao, Hong, and Wan 2022)
match data from different modalities via nonlinear manifold
alignment, which cannot align uniformly distributed data and
are limited by the number of cell types. Scanorama (Hie,
Bryson, and Berger 2019) and GLUE (Cao and Gao 2022)



are graph-based methods, Scanorama is suitable for batch in-
tegration, and GLUE requires additional expert knowledge as
well as complex training strategies. CoVEL is not limited to
the number of cell types and complex training strategies, and
supports unsupervised integration of three and more modali-
ties.

Figure 2: The overall architecture of CoVEL, and view 3
embedding is the embedding of cells in the multimodal joint
space. a: graph-linked embedding learning (view 1 embed-
ding, blue bold). b: fine-grained cell embedding learning
(view 2 embedding, orange bold). c: contrastive cell embed-
ding learning (view 3 embedding, green bold).

Method
For single-cell multimodal data, CoVEL learning includes
embeddings from three views, graph-linked embedding,
which describes the relationship between different modalities;
fine-grained cell embedding, which describes the fine-grained
representations of cell in a specified modality; contrastive

cell embedding, which is an optimized cell representation
based on contrastive learning. We will introduce the learning
details of three embeddings respectively.

Graph-linked embedding learning
Assume there are K modalities, each modality has a dif-
ferent feature set Vk, k = 1, ...,K. For RNA modality, the
feature set is a collection of genes, and for ATAC modal-
ity, the feature set is a collection of chromatin regions. The
data for mode k is Xk ⊆ RNk×|Vk|, Nk is the number of
cells. Let x(n)

k ∈ Xk, n = 1, 2, ..., Nk represents a cell in
the modal k. We follow GLUE (Cao and Gao 2022) and
use the features of the modality as nodes to build a Coarse
graph-linked guidance G = ({V1, ..., VK} , E). The guid-
ance graph has

∑K
k=1 |Vk| nodes, E is the edge set, which

is the interaction between different modal features. Edge
(i, j), i, j ∈ {V1, ..., Vk} has weight wij ∈ (0, 1] repre-
sents the the interaction confidence, and edge (i, j) has sign
sij ∈ {−1, 1}. For example ATAC often positively regulate
gene (sij = 1, i, j represents gene and the corresponding
chromatin region respectively). The construction of guidance
graph is easily available, see section Experimental configu-
ration.

We model the guidance graph with graph VAE (Kipf and
Welling 2016) to get the modal feature embedding (view 1
embedding in Figure 2a) fi ∈ Rm for node i, where fi ⊆
F , i ∈ V = {V1, ..., VK}. Graph encoder is 2-layer GAT
(Veličković et al. 2017):

q(F |G) =

|V |∏
i=1

N (fi|µi, σ
2
i )

=

|V |∏
i=1

N (fi|GATµi(G), GATσ2
i
(G)), (1)

where u⊤
i , σ

⊤
i ∈ Rm represent mean and variance of node

i embedding. Node i embedding (view 1 embedding) is
fi = GATµi(G) + ϵ × GATσ2

i
(G), ϵ ∼ N (0, I). Graph

decoder calculates the probability of an edge between any
two nodes in the guidance graph, and obtains Fine graph-
linked guidance:

p(Ĝ|F ) =

|V |∏
i=1

|V |∏
j=1

p(Ĝ|fi, fj)

=

|V |∏
i=1

|V |∏
j=1

sigmoid(fi · f⊤
j ). (2)

Therefore, Fine graph-linked guidance is Ĝ = F · F⊤. The
loss function includes the distance between Fine graph-linked
guidance and Coarse graph-linked guidance, and the KL
divergence of feature embedding distribution and normal
distribution:

Lview1 = −EF∼q(F |G)[log p(Ĝ|F )]

+KL[q(F |G)||N (0, I)]. (3)



By learning graph-linked embedding, we can integrate the
feature information of different modalities, and the obtained
feature embedding F1 ∈ R|V1|×m, ..., FK ∈ R|VK |×m con-
tains interaction information of different modalities.

Fine-grained cell embedding learning
Fine-grained learning can enhance the model’s recognition
of fine-grained discriminative features in each cell. We use
Teacher transformer layer to learn single cell fine-grained
embedding. The Asymmetric network of each modality con-
tains a Teacher Transformer layer respectively, see Figure
2b. The Asymmetric network corresponding to each modal-
ity is parameter-unshared, see Figure 2 lower left. Tak-
ing RNA modality as example, a cell x

(n)
1 ∈ X1 (n =

1, ..., N1) is transformed into x
(n),position
1 ∈ Xposition

1 and
x
(n),counts
1 ∈ Xcounts

1 . x(n),counts
1 is gene expression of cell

n. x(n),position
1 is gene position embedding of cell n, we

can use gene2vec (Du et al. 2019) to encode each gene, or
use view 1 embedding F1 as position embedding. Similarly,
view 1 embedding Fk can be flexibly used as position em-
bedding for modality k. Position embedding provide context
information for features.

We use Performer (Choromanski et al. 2021) to learn fine-
grained cell embedding. For RNA modality, Performer con-
siders the relationship between any pair of genes. Input is
x
(n),in
1 = concat(x

(n),position
1 , x

(n),counts
1 ), and x

(n),in
1 ∈

R|V1|×c, c is the dimension number after concating. The at-
tention module Attn(·) is calculated as:

q = x
(n),in
1 Wq, k = x

(n),in
1 Wk, v = x

(n),in
1 Wv, (4)

z = Performer(q, k, v)Wo, (5)

where, Wq,Wk,Wv,Wo ∈ Rc×c are projection matrix,
z ∈ R|V1|×c is output of attention module. When construct-
ing Teacher Transformer layer, we adopt module MLP (·)
with two linear transformations and GELU activation func-
tion to provide nonlinear transformation. Then we add layer
normalization LN(·) and residual connection. Therefore, the
l-th layer of Teacher Transformer layer is:

zl = MLP (LN(Attn(LN(zl−1)) + zl−1))

+Attn(LN(zl−1)) + zl−1. (6)

We set 2 layers Teacher Transformer. One cell output is
zteacher ∈ R|V1|×c. In addition, for Student Dense layer,
we set a simple fully connected network Dense(·), input is
x
(n),in
1 , output is zstudent = Dense(x

(n),in
1 ) ∈ R|V1|×c.

For contrastive learning, we use zteacher and zstudent to
construct positive sample pairs. With random Dropout and
Projection, we transform zteacher and zstudent into a pair
of vectors zteacher ∈ Rm and zstudent ∈ Rm, respectively.
For N1 samples, we obtain two corresponding positive sam-
ple matrices Zteacher

1 ∈ RN1×m and Zstudent
1 ∈ RN1×m,

where, the cells with the same row in two matrices constitute
a positive sample pair. Similarly, for modality k, we have
Zteacher
k ∈ RNk×m and Zstudent

k ∈ RNk×m. And Zteacher
k

is single cell fine-grained embedding (view 2 embedding) in
modality k.

Contrastive cell embedding learning
Contrastive learning on the unit hypersphere space. For a
cell, we treat all other cells and their corresponding posi-
tive samples as negative samples for this cell. We separate
cells from negative samples and bring cells closer to pos-
itive samples. Let cell j in modality k has a positive pair
zteacherj ∈ Zteacher

k and zstudentj ∈ Zstudent
k , we define the

distance between them is:

sj,j+ =
(zteacherj )⊤ · zstudentj

τ∥zteacherj ∥∥zstudentj ∥
, (7)

where, j, j+ is a positive pair, τ is an adjustable coefficient.
For distance between cell j and negative sample r. We

have:

sj,r =
(zteacherj )⊤ · zstudentr

τ∥zteacherj ∥∥zstudentr ∥

+
(zteacherj )⊤ · zteacherr

τ∥zteacherj ∥∥zteacherr ∥
. (8)

We randomly sample Nbatch cells from a dataset containing
all modalities {N1, ..., NK}. Based on Teacher and Student
branches, 2Nbatch data points can be obtained. Therefore,
given a cell from Nbatch, we have 2Nbatch − 2 data points as
negative samples. The contrastive loss is:

Lview3 =

− 1

2Nbatch

Nbatch∑
j=1

log
esj,j+∑Nbatch

r=1,r ̸=j [e
sj+,r + esj,r ]

. (9)

With contrastive learning, we can obtain representations that
contain more discriminative information, and these represen-
tations are all in the same feature space. We use the opti-
mized Teacher branch embedding of contrastive learning as
joint embedding, that is, view 3 embedding Uk ∈ RNk×m,
k = 1, ...,K, see Figure 2c.

We combine view 1 embedding with view 3 embedding to
reconstruct the input. This is a simple decoding process:

X̂k = Uk · F⊤
k . (10)

The reconstruction input is used for learning view 2 embed-
ding (single cell fine-grained embedding):

Lview2 =

K∑
k=1

∥Xk − X̂k∥. (11)

The overall learning goal of CoVEL is to minimize the sum
of loss functions L:

L = Lview1 + Lview2 + Lview3. (12)

Experiment
Dataset
Mouse skin dataset (Ma et al. 2020): It is from SHARE-seq
technology, which can simultaneously measure chromatin
accessibility and gene expression in the same single-cell,
the dataset contains 32,231 jointly measured cells of mouse



Table 1: Comparison of different methods on test set. Abbreviations: Batch remove; Bio.c, Biology conservation.

Chen-2019 10x-Multiome Muto-2021 Yao-2021

Methods Batch.r Bio.c Batch.r Bio.c Batch.r Bio.c Batch.r Bio.c

iNMF(Gao et al. 2021) 0.695 0.491 0.911 0.571 0.957 0.621 0.815 0.609
LIGER(Welch et al. 2019) 0.718 0.495 0.927 0.559 0.962 0.636 0.814 0.634
bindSC(Dou et al. 2022) 0.717 0.511 0.983 0.545 0.977 0.568 - -
Harmony(Korsunsky et al. 2019) 0.734 0.507 0.984 0.559 0.971 0.625 0.972 0.556
Seurat v3(Stuart et al. 2019) 0.778 0.521 0.981 0.613 0.982 0.681 0.968 0.562
GLUE(Cao and Gao 2022) 0.856 0.574 0.989 0.602 0.969 0.638 0.989 0.604

CoVEL 0.881 0.593 0.981 0.639 0.998 0.721 0.994 0.681

skin, including RNA modality and ATAC modality. Each
cell in the dataset is matched one-to-one across modalities.
Mouse cortex dataset (Saunders et al. 2018; Luo et al. 2017):
Three distinct omics layers from neuronal cells in the adult
mouse cortex, including gene expression (RNA modality),
chromatin accessibility (ATAC modality), and DNA methy-
lation (snmC modality). And the data come from different
technologies: Drop-seq, 10x ATAC and snmC-seq. Since
there is no joint measurement, the cells in the dataset do not
have a matching relationship between modalities, and each
modality has different cell classification criteria, which leads
challenges for the interpretability of multimodal integration.
Other datasets: Chen-2019 used SNARE-seq technology to
jointly measure 9,190 cells in mouse cortex (Chen, Lake, and
Zhang 2019). 10x-Multiome used 10x-Multiome technology
to jointly measure 9,631 cells of human PBMC (Cao and Gao
2022). Muto-2021 measured 44,190 cells from human kidney
using snRNA-seq and snATAC-seq technologies, respectively
(Muto et al. 2021). Yao-2021 measured 124,571 cells from
mouse MOp using 10x RNA v3 and snATAC-seq technology
(Yao et al. 2021). All datasets are preprocessed according to
the standard of scanpy (Wolf, Angerer, and Theis 2018).

Experimental configuration
The construction of guidance graph is easily available. For
example, for the RNA modality and ATAC modality, we
reserve the "genome coordinates" field for the features of
these two modalities, and then use the "genome coordinates"
field to build the relationships between cross-modal features.
The relationship between them, that is, the edges of the graph.
For RNA modality and snmC modality, we use the ’gene
name’ field to establish relationships between cross-modal
features.

According to the regulatory relationship across modalities,
we can obtain the edge sign, see section Graph-linked embed-
ding learning. For example, ATAC peaks usually positively
regulate gene expression (sij=1, where i, j represent gene
and the corresponding chromatin region, respectively), DNA
methylation usually inhibits gene expression (sij = −1,
where i, j represent gene and the corresponding methylated
fragment, respectively).

CoVEL trained using NVIDIA GeForce RTX A6000 with
48 GB memory. Adam optimizer with 0.001 learning rate was

used to update model parameters. The batch size was set to 16.
We use six representative methods for multimodal integration
as baselines: Seurat v3 (Stuart et al. 2019), GLUE (Cao and
Gao 2022), Harmony (Korsunsky et al. 2019), LIGER (Welch
et al. 2019), bindSC (Dou et al. 2022), iNMF (Gao et al.
2021). Evaluation metrics include Batch remove (Batch.r:
graph connectivity) and Biology conservation (Bio.c: cell
type average silhouette width).

Results and discussion
Multimodal integration
We evaluate CoVEL and baselines on the mouse skin dataset
(Ma et al. 2020), where each cell is matched one-to-one
across modalities, and good multimodal integration methods
should align the same cells in different modalities.

We integrate the RNA modality and the ATAC modality
using different methods, and visualize the joint embedding
across two modalities using UMAP (McInnes, Healy, and
Melville 2018), see Figure 3a. For the representative meth-
ods GLUE and Seurat v3, it is obvious that they have not
aligned the embedding on some cells, and CoVEL obtains
better results (blue cells in ATAC modality achieve greater
alignment with orange cells in RNA modality). We quanti-
tatively evaluated the multimodal integration performance
of different methods using Batch removal and Biology con-
servation, each method was tested under 8 different random
seeds (the random seed is sequentially set to an integer from
0 to 7). Compared with baselines, CoVEL removes the gap
between modalities to the greatest extent, protects biological
heterogeneity to the greatest extent, and the result is robust,
see Figure 3b. For multimodal integration task, all methods
learn joint embedding unsupervisedly on the entire dataset.

To evaluate the method’s robustness to dataset size, we
apply the methods on subsampled datasets of different sizes.
We compare the performance of all methods on each subsam-
pled dataset, see Figure 3c and Figure 3d. The results show
that some methods also perform well on highly downsampled
datasets. But there is a certain degree of loss in integrated per-
formance compared to the full dataset. CoVEL can achieve
excellent performance with small-scale dataset. And as the
scale of the dataset increases, CoVEL will have more advan-
tages. The integration results on more datasets are compared



Figure 3: Multimodal integration results. a: UMAP visualization of different integration methods. b: multimodal integration
performance comparison. c and d: robustness evaluation with subsampled datasets of various sizes.

in Table 1. Yao-2021 contains too many cells which cannot
be processed by bindSC.

Ablation study
We evaluate ablation study on mouse skin dataset (Ma et al.
2020). We randomly remove edges in the guidance graph
to obtain graph with varying degrees of damage. For fine-
grained learning, we replace Teacher Transformer layer with
a Dense layer. For contrastive learning, we use view 2 em-
bedding as the joint embedding for multimodal integration.
CoVEL’s ablation study results see Table 2. CoVEL is robust
to damaged guidance graph, and full guidance graph can help
CoVEL preserve biological heterogeneity in multimodal data.
In addition, fine-grained learning and contrastive learning
allow CoVEL to achieve good batch removal performance.

Table 2: Ablation study of CoVEL. Let light-gray row is ref-
erence. ∆ is the difference between the result and reference.
Abbreviations: e.d, edge dropout; f.l, fine-grained learning;
c.l, contrastive learning; Batch.r, Batch remove; Bio.c, Biol-
ogy conservation.

e.d f.l c.l Batch.r Bio.c ∆Batch.r ∆Bio.c

0.0 Yes Yes 0.968 0.562 0.0 0.0
0.3 Yes Yes 0.966 0.558 -0.002 -0.004
0.6 Yes Yes 0.961 0.541 -0.007 -0.021

0.0 No Yes 0.919 0.560 -0.049 -0.002
0.0 Yes No 0.904 0.559 -0.064 -0.003
0.0 No No 0.881 0.537 -0.087 -0.025
0.6 No No 0.874 0.482 -0.094 -0.080

Interpretability of joint embedding
CoVEL supports the integration of three modalities and more.
We utilize CoVEL to integrate mouse cortex dataset (Saun-
ders et al. 2018; Luo et al. 2017). This dataset contains
RNA modality, ATAC modality and snmC modality, and
each modality has different cell classification criteria (the
RNA modality corresponds to 8 types of cells, the ATAC
modality corresponds to 10 types of cells, and the snmC

Figure 4: UMAP visualization of 3-modal integration. Left:
direct dimensionality reduction to the same embedding space
for data from three modalities. Middle: CoVEL eliminates
the gap between modalities. Right: Adding cell type annota-
tions to the integrated embedding space, same types of cells
are clustered, demonstrating that the integration preserves
biological heterogeneity.

modality corresponds to 16 types of cells). CoVEL fully inte-
grates the 3 modalities and obtains a uniformly distributed
joint embedding space, see Figure 4 middle part. When we
add real cell type annotations to the joint embedding, we can
find that the distribution of cell types is uniform and biolog-
ical heterogeneity is preserved, see the right part of Figure
4. Note that the three modalities are essentially different de-
scriptions of mouse cortex. Therefore, for joint embedding,
we can just choose a modality (such as RNA) to represent
biological heterogeneity. In Figure 4 right part, we added cell
type annotations of RNA modality classification criteria. This
result shows that CoVEL is correct for 3-modal integration.
In the right part of Figure 4, some clusters are not dense
enough (such as CGE cluster), because these cell clusters
can be further divided into new subtype clusters. The joint
embedding interpretability discussed below can verify this
phenomenon.

There are known facts (Saunders et al. 2018; Luo et al.
2017): MGE and CGE in the RNA modality can be divided
into two subtypes, and L6-IT and Vip in the ATAC modality
can be divided into two subtypes. At the same time we fo-
cused on the rare subtype mDL-3. Using the snmC modality
as reference dataset (snmC modality cell classification crite-
ria: snmC modality corresponds to 16 types of cells), we use
KNN to classify the joint embedding of the RNA modality
and the ATAC modality into cell types under the snmC modal-



ity. At the same time, mNdnf-1 and mNdnf-2 in the snmC
modality were merged into mNdnf, and mSst-1 and mSst-2
were merged into mSst. The results of cell classification after
reference mapping are shown Figure 5b.

We count the flow of categories from Figure 5a to Figure
5b to obtain Figure 5c. We set the cells related to mPv and
mSst to be highlighted with lightblue flow, the cells related to
mNdnf and mVip to be highlighted with lightpink flow, and
the cells related to mDL-3 to be highlighted with lightgreen
flow. The result of Figure 5c shows that the joint embedding
learned by CoVEL is consistent with known facts, which
verifies the interpretability of CoVEL.

Figure 5: Interpretability analysis. a: use CoVEL to learn
the joint embedding of three modalities, and add correspond-
ing real annotations (cell type categories) to the embedding
UMAP visualization of each modality. b: KNN is used to
classify the joint embedding in RNA modality and ATAC
modality to the cell type corresponding to snmC modality. c:
statistics of category flow from a to b (reference mapping,
RNA modality and ATAC modality as query, snmC modality
as reference).

Application of downstream task

Figure 6: Verify trajectory inference. a: CoVEL-based trajec-
tory inference results. b: The reliability of trajectory inference
is verified by RNA velocity, the left corresponds to clusters,
and the right corresponds to pseudotime.

In Figure 3a and Figure 4, there is a slight gap between
different clusters (although the gap is small, it is enough to
discriminate cell types), which indicates that the embedding

space integrated using CoVEL presents continuity. This prop-
erty enables the subtle differences of cells to be reflected in
trajectory inference task, thus more accurately showing the
cell differentiation process. We use CoVEL integrate RNA
data (Bastidas-Ponce et al. 2019) and ATAC data (Duvall
et al. 2022) of mouse pancreas, and use the integrated embed-
ding for PAGA (Wolf et al. 2019) trajectory inference. We
can obtain 4 differentiation trajectories, as shown in Figure
6a: from Ngn3 low EP to Alpha, Beta, Epsilon and Delta
respectively. The changes of the statistical genes Cpe and
Ins2 on Beta trajectory are shown in Figure 6a lower. The
reliability of trajectory inference was verified using RNA
velocity (spliced and unspliced), see Figure 6b. Cpe explains
the differentiation direction: Ngn3 high EP (green scatter)
→ Pre-endocrine (red scatter) → Beta (purple scatter). Ins2
explains separate expression in Beta cells. The consistency of
Figure 6a and Figure 6b shows that CoVEL-based trajectory
inference results are consistent with real cell differentiation.

Conclusion
In this study, based on the current challenges of single-cell
multimodal integration, we propose CoVEL, a deep learning
method for unsupervised single-cell multimodal integration.
In order to fully mine and fuse information in multimodal
data, CoVEL learns single-cell representations from compre-
hensive views, including regulatory relationships between
modalities, fine-grained representations of cells, and relation-
ships between different cells. The comprehensive view em-
bedding enables CoVEL to remove the gap between modali-
ties while protecting biological heterogeneity. Experimental
results on multiple public datasets show that CoVEL is accu-
rate and robust to the single-cell multimodal integration. For
the challenging unpaired 3-modal integration task, CoVEL
still has good interpretability. Finally, ablation study shows
that the regulatory relationship between modalities can help
CoVEL preserve biological heterogeneity in multimodal data.
Fine-grained representation learning and contrastive learning
of cells enable CoVEL to achieve excellent batch removal
performance.
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